$[I_2](m.mol/L)$ 

 $U_c(V)$ 

(1)

(2)

### الامتحان لثلاثي الأول في ماحة العلوم الغيزيائية

### التمرين الأول:

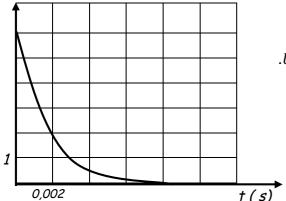
، c=0.1mol/l ، لهما نفس التركيز ( $H_2O_2$ ) و الماء الأكسجيني ( $H_2O_2$ ) ، لهما نفس التركيز نحول بطئ بين شوارد اليود ( $I^-$ ) و الماء الأكسجيني (نحقق الخليطين التاليين :

| الخليط | $(I^{-})$ شوارد اليود | الماء الأكسجيني (H2O2) |
|--------|-----------------------|------------------------|
| الأول  | 18 mL                 | 2 mL                   |
| الثاني | 10 mL                 | 1 mL                   |

نضيف لكل خليط كمية من الماء المقطر وقطرات من حمض الكبريت فيصبح الحجم التفاعلي (الكلي):

: معادلة التفاعل الحادث في كل خليط كمايلي  $V = 30 \; mL$ 

 $2\,I^{-}_{(aq)} + 2\,H^{+}_{(aq)} + H_2O_{2\,(aq)} = I_{2\,(aq)} + 2\,H_2O_{(l)}$ 


1 - أكتب المعادلتين النصفيتين للتفاعل الحادث . ثم استنتج الثنائيتين الداخلتين في التفاعل .

- 2 أ أحسب من أجل كل خليط الكميات الابتدائية . ب - أنشئ جدول التقدم للتفاعل الحادث في الخليط الأول .
  - 3 يعطي البيان المقابل تركيز ثنائي اليود المتشكل بدلالة الزمن في كل خليط.
  - أ أحسب تركيز اليود المتشكل في الحالة النهائية في الخليط الأول .
- ب استنتج من البيان الأول تركيز اليود المتشكل في اللحظة # 30min
- ج هل إنتهي التفاعل في الخليط الأول عند † عمّل علّل .
  - $I_2$  أ عرف سرعة تشكل ثنائي اليود بدلالة  $I_2$  .

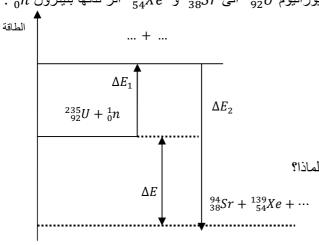
# التمرين الثاني:

لدينا مكثفة سعتها  $q=0.6 imes 10^{-6}c$  ، وناقل اومي مقاومته  $c=1.0 imes 10^{-1}\mu F$  ، وناقل اومي مقاومته t=0 ، كناق التسلسل باستعمال المكثفة والناقل الاومي وقاطعة t=0 . اللحظة t=0 نخلق القاطعة .

- 1- ارسم مخطط الدارة الموصوفة سابقا.
- 2- مثل على المخطط: جهة مرور التيار الكهربائي في الدارة.
  - .  $U_c$  و جد علاقة بين  $U_R$  و  $U_c$
- $U_c$  بالاعتماد على قانون جمع التوترات ، اوجد المعادلة التفاضلية بدلالة -4
  - $U_c = ae^{bt}$  ان حل المعادلة التفاضلية السابقة هو من الشكل -5 و  $ae^{bt}$  و  $ae^{bt}$  عينهما.
    - $U_c$  اكتب العبارة الزمنية للتوتر -6



:-1- ان العبارة الزمنية  $U_c = f(t)$  تسمح برسم البيان الشكل


اشرح على البيان الطريقة المتبعة للتأكد من القيم المحسوبة سابقا في السؤال (5).

اقلب الصفحة.

الصفحة 2/1

#### التمرين الثالث:

المخطط الطاقوي (الشكل-1-) يمثل الحصيلة الطاقوية لتفاعل انشطار اليورانيوم  $^{235}_{92}$  الى  $^{235}_{38}$  و  $^{139}_{54}$  اثر قذفها بنيترون  $^{1}_{0}$ .



- 1- أ- عرف طاقة الربط  $E_l$  للنواة واكتب عبارتها الحرفية? -1 ب- أعط عبارة طاقة الربط لكل نوية .
  - $2^{-}$  أ- اكتب معادلة تفاعل نواة اليورانيوم  $2^{235}_{92}U$  .  $2^{-}$  اكمل المخطط الطاقوى.

ج- يعرف التفاعل السابق على انه تفاعل تسلسلي مغذى ذاتيا لماذا؟

 $\Delta E$  احسب ب Mev کلا من  $\Delta E_2$  و  $\Delta E_1$  د

4- ا- احسب بالجول مقدار الطاقة المحررة عن انشطار 1g من 1g

ب- على اى شكل تظهر الطاقة المحررة ؟

5- ماهي كتلة غاز المدينة (غاز الميثان  $CH_4$ ) الملازمة للحصول على طاقة تعادل الطاقة المتحررة من انشطار m=2.5g من اليورانيوم 235 ؟ علما ان احتراق  $1\ mol$  من غاز الميثان يحرر طاقة مقدارها  $8,0.10^5 J$ .

المعطبات:

 ${}^{\prime}\frac{E_{l}}{A}({}^{139}_{54}Xe)=8,34~{\rm Mev/Nucl\acute{e}on}$   ${}^{\prime}\frac{E_{l}}{A}({}^{235}_{92}U)=7,62~{\rm Mev/Nucl\acute{e}on}$   ${}^{\prime}1Mev=1,6.~10^{-13}j$   ${}^{\prime}N_{\rm A}=6,023.~10^{23}{\rm mol}^{-1}$   ${}^{\prime}\frac{E_{l}}{A}({}^{94}_{38}Sr)=8,62~{\rm Mev/Nucl\acute{e}on}$ 

## تمرين خاص بالتقنى رياضى: تاريخ صخرة معدنية بواسطة اليور انيوم – الرصاص:

نجد الرصاص واليور انيوم بنسب مختلفة في الصخور المعدنية حسب تاريخ تكوينها.

نعتبر ان تواجد الرصاص واليورانيوم في بعض الصخور المعدنية ينتج فقط عن التفتت التلقائي لليورانيوم 238 خلال الزمن .  $m_{D}(t) = 0.01g$  عند من نوى اليورانيوم 238 من  $m_{D}(t) = 0.01g$  من اليورانيوم 238 والكتلة  $m_{D}(t) = 0.01g$  من اليورانيوم 238 والكتلة  $m_{D}(t) = 0.01g$  من الرصاص 206.

- $t = \frac{t_{1/2}}{ln_2} \cdot ln \left[ 1 + \frac{m_{Pb}(t).M_U}{m_U(t).M_{Pb}} \right]$  عبارة الصخرة المعدنية تعطى كما يلي: -1
  - .t اوجد  $t_{1/2} = 4.468 \times 10^9 \ ans$  اوجد -2

اساتذة المادة. الصفحة 2/2 انتهى – بالتوفيق.